МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Природа рентгеновского излучения





Рентгеновское излучение – электромагнитные волны с длинной от 80 до 10–5 нм. Длинноволновое рентгеновское излучение перекрывается коротковолновым УФ излучением, коротковолновое – длинноволновым -излучением.g

Рентгеновское излучение получают в рентгеновских трубках. рис.1.


К – катод

А – анод

1 – пучок электронов

2 –рентгеновское излучение


Рис. 1. Устройство рентгеновской трубки.


2. Конструктивные особенности рентгеновской трубки

Трубка представляет собой стеклянную колбу (с возможно высоким вакуумом: давление в ней порядка 10–6 мм.рт.ст.) с двумя электродами: анодом А и катодом К, к которым приложено высокое напряжение U (несколько тысяч вольт). Катод является источником электронов (за счет явления термоэлектронной эмиссии). Анод – металлический стержень, имеет наклонную поверхность для того, чтобы направлять возникающее рентгеновское излучение под углом к оси трубки. Он изготовляется из хорошо теплопроводящего материала для отвода теплоты, образующейся при бомбардировке электронов. На скошенном торце имеется пластинка из тугоплавкого металла (например, вольфрама).

Сильный разогрев анода обусловлен тем, что основное количество электронов в катодном пучке, попав на анод, испытывает многочисленные столкновения с атомами вещества и передает им большую энергию.

Под действием высокого напряжения электроны, испущенные раскаленной нитью катода, ускоряются до больших энергий. Кинетическая энергия электрона равна mv2/2. Она равна энергии, которую он приобретает, двигаясь в электростатическом поле трубки:

mv2/2 = eU (1)

где m, e – масса и заряд электрона, U – ускоряющее напряжение.

Процессы приводящие к возникновению тормозного рентгеновского излучения обусловлены интенсивным торможением электронов в веществе анода электростатическим полем атомного ядра и атомарных электронов.

Механизм возникновения можно представить следующим образом. Движущиеся электроны – это некоторый ток, образующий свое магнитное поле. Замедление электронов – снижение силы тока и, соответственно, изменение индукции магнитного поля, которое вызовет возникновение переменного электрического поля, т.е. появление электромагнитной волны.

Таким образом, когда заряженная частица влетает в вещество, она тормозится, теряет свою энергию и скорость и излучает электромагнитные волны.


Взаимодействие рентгеновского излучения с веществом


Воздействие рентгеновского излучения на объекты определяется первичными процессами взаимодействия рентгеновского фотона с электронами атомов и молекул вещества.

Рентгеновское излучение в веществе поглощается или рассеивается. При этом могут происходить различные процессы, которые определяются соотношением энергии рентгеновского фотона hv и энергии ионизации Аи (энергия ионизации Аи – энергия, необходимая для удаления внутренних электронов за пределы атома или молекулы).

а) ^ Когерентное рассеяние (рассеяние длинноволнового излучения) происходит тогда, когда выполняется соотношение

hv < Аи.

У фотонов вследствие взаимодействия с электронами изменяется только направление движения (рис.3а), но энергия hv и длина волны не меняются (поэтому это рассеяние называется когерентным). Так как энергия фотона и атома не изменяются, то когерентное рассеяние не влияет на биологические объекты, но при создании защиты от рентгеновского излучения следует учитывать возможность изменения первичного направления пучка.



б) Фотоэффект происходит тогда, когда

А³hv и.

При этом могут быть реализованы два случая.

1.
Фотон поглощается, электрон отрывается от атома (рис. 3б). Происходит ионизация. Оторвавшийся электрон приобретает кинетическую энергию: Eк = hv – Aи. Если кинетическая энергия велика, то электрон может ионизировать соседние атомы путем соударения, образуя новые вторичные электроны.

2.
Фотон поглощается, но его энергии не достаточно для отрыва электрона, и может происходить возбуждение атома или молекулы (рис.3в). Это часто приводит к последующему излучению фотона в области видимого излучения (рентгенолюминесценция), а в тканях – к активации молекул и фотохимическим реакциям. Фотоэффект происходит, в основном, на электронах внутренних оболочек атомов с высоким Z.


в) ^ Некогерентное рассеяние (эффект Комптона, 1922 г.) происходит тогда, когда энергия фотона намного больше энергии ионизации

hv » Аи.

При этом электрон отрывается от атома (такие электроны называются электронами отдачи),приобретает некоторую кинетическую энергию Eк, энергия самого фотона уменьшается (рис. 4г):

hv = hv'+ Аи + Ек. (5)

Образующееся таким образом излучение с измененной частотой (длиной) называется вторичным, оно рассеивается по всем направлениям.

Электроны отдачи, если они имеют достаточную кинетическую энергию, могут ионизировать соседние атомы путем соударения. Таким образом, в результате некогерентного рассеяния образуется вторичное рассеянное рентгеновское излучение и происходит ионизация атомов вещества.


3. Рентгенография
При падении рентгеновского излучения на тело оно незначительно отражается от его поверхности, а в основном проходит вглубь, при этом частично поглощается и рассеивается, частично проходит насквозь.

В медицине используется рентгеновское излучение с энергией фотонов от 60 до 100-120 кэВ при диагностике и 150-200 кэВ при терапии.

Рентгенодиагностика распознавание заболеваний при помощи просвечивания тела рентгеновским излучением.

Рентгенодиагностику используют в различных вариантах, которые приведены ниже.

 

1. При рентгеноскопии рентгеновская трубка расположена позади пациента. Перед ним располагается флуоресцирующий экран. На экране наблюдается теневое (позитивное) изображение. В каждом отдельном случае подбирается соответствующая жесткость излучения, так чтобы оно проходило через мягкие ткани, но достаточно поглощалось плотными. В противном случае получается однородная тень. На экране сердце, ребра видны темными, легкие – светлыми.

2. При рентгенографии объект помещается на кассете, в которую вложена пленка со специальной фотоэмульсией. Рентгеновская трубка располагается над объектом. Получаемая рентгенограмма дает негативное изображение, т.е. обратное по контрасту с картиной, наблюдаемой при просвечивании. В данном методе имеет место большая четкость изображения, чем в (1), поэтому наблюдаются детали, которые трудно рассмотреть при просвечивании. Перспективным вариантом данного метода является рентгеновская томография и "машинный вариант" – компьютерная томография.

3. При флюорографии, на чувствительной малоформатной пленке фиксируется изображение с большого экрана. При рассматривании снимки рассматриваются на специальном увеличителе.

Рентгенотерапия – использование рентгеновского излучения для уничтожения злокачественных образований.

Биологическое действие излучения заключается в нарушении жизнедеятельности, особенно быстро размножающихся клеток.

 

Ксерорентгенография

Электрорентгенография (синоним ксерорентгенография) — метод рентгенографии, при котором получают рентгеновское изображение на заряженной полупроводниковой пластине, а затем переносят его на обычную бумагу. Носителем изображения является электростатически заряженный слой аморфного селена.

Процесс электрорентгенографии состоит из 5 этапов. Первый — нанесение на селеновую пластину положительного электростатического заряда, в результате чего она становится чувствительной к рентгеновскому излучению. Второй этап — рентгеновская съемка исследуемого объекта, при которой вместо рентгеновской пленки используют селеновую пластину. Под влиянием рентгеновского излучения, проходящего через исследуемый объект, на поверхности пластины меняется электрический потенциал (уменьшается положительный заряд) и создается скрытое электростатическое изображение. Третий этап — проявление. Пластину опыляют черным порошком, отрицательно заряженные частицы порошка оседают на поверхности пластины соответственно сохранившемуся на ней положительному заряду. Четвертый этап — перенос порошкового изображения с пластины на бумагу контактным способом, пятый — закрепление изображения. Все этапы, кроме собственно рентгеновской съемки, осуществляются с помощью электрографического аппарата, состоящего из технологического блока (для зарядки пластин и переноса изображения с них на бумагу) и блока закрепления.

Электрорентгенография имеет ряд важных отличий от рентгенографии. В частности, при Э. отмечается так называемый краевой эффект — более интенсивное отложение порошка на границе участков с различными потенциалами, что обеспечивает четкость контуров тени, высокую контрастность и некоторое увеличение изображения. Все это создает впечатление объемности деталей и повышает диагностические возможности метода. При исследовании мягких тканей удается получить изображение кожи, подкожной клетчатки, мышц, связок, что позволяет выявлять очаги воспаления, кровоизлияния, кисты. Метод позволяет одновременно получить изображение тканей, различающихся по плотности и толщине. Так, при исследовании суставов наряду с суставными концами костей определяются элементы связочного аппарата, сухожилия, мышцы

Существенными преимуществами метода являются экономичность и быстрота получения изображения: за 2—3 мин получают сухой снимок (рентгеновское изображение объекта исследования на обычной бумаге). К недостаткам метода следует отнести относительно более высокую дозу облучения при исследовании и ненадежность существующей аппаратуры. Наиболее целесообразно применение электрорентгенографии в травматологических пунктах

Ионография

 

Схема способа печати ионографии

 

 

В способе электрофотографии, рассмотренном выше, скрытое изображение на носителе получалось при использовании фотополупроводниковых материалов.

В способеионографии происходит формирование зарядового изображения на носителе системой с ионным источником. Визуализация изображения, как и в способе электрофотографии, происходит с помощью тонера. После того, как изображение на бумагу перенесено, поверхность цилиндра нуждается в очистке при помощи механических и ракельных систем.

Фиксирование изображения происходит уже в зоне контакта при переносе тонера на бумагу с помощью подачи тепла и давления цилиндра. Окончательное фиксирование изображения осуществляется импульсной ксеноновой лампой. Вновь происходит оплавление тонера на бумаге при восприятии излучаемого тепла.

Иногдаионографию называют электронно-лучевой печатью.





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.