МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Бионический (нейросетевой) подход к созданию интеллектуальных компьютерных систем





Понятие «интеллектуальной» информационной технологии

Искусственный интеллект — одна из новейших наук, появившихся во второй половине XX века на базе вычислительной техники, математической логики, программирования, психологии, лингвистики, нейрофизиологии и других отраслей знаний. Искусственный интеллект — это образец междисциплинарных исследований, где соединяются профессиональные интересы специалистов разного профиля. Само название новой науки возникло в конце 1960-х годов.

Исследования в области искусственного интеллекта направлены на создание машин, обнаруживающих поведение, которое у людей называется интеллектуальным. Поскольку машины такого типа почти всегда являются вычислительными, направление «искусственный интеллект» относится к области вычислительной техники. Слово «интеллект» употребляется в различных смыслах, и хотя каждый из нас имеет достаточно определенное субъективное представление о том, что следует понимать под человеческим интеллектом, значительный интерес могут представить следующие определения, приведенные в словаре Вебстера:

· способность успешно реагировать на любую, особенно новую ситуацию путем надлежащих корректировок поведения;

· способность понимать взаимосвязи между фактами действительности для выработки действий, ведущих к достижению поставленной цели.

Эти определения в равной степени могут быть применены как к поведению машины, так и к поведению человека. Понятие интеллекта предполагает наличие многих целей, а также способность к обучению.

Искусственный интеллектэто программная система, имитирующая на компьютере мышление человека. Для создания такой системы необходимо изучить процесс мышления человека, решающего определенные задачи или принимающего решения в конкретной области, выделить основные шаги этого процесса и разработать программные средства, воспроизводящие их на компьютере. Следовательно, методы искусственного интеллекта предполагают простой структурный подход к разработке сложных программных систем принятия решений.

Информатика и искусственный интеллект имеют тесные взаимосвязи с лингвистикой, психологией и логикой, которые изучают явления, относящиеся к познанию и построению умозаключений. С одной стороны, лингвисты, психологи, специалисты в области математической логики переводят в программы те новые модели, которые они разрабатывают, а с другой — исследователи в области искусственного интеллекта изучают эти модели и пытаются воссоздать на их основе логику эффективных методов решения задач.

Считается, что совокупность научных исследований обретает права науки, если выполнены два необходимых условия:

· у этих исследований должен быть объект изучения, не совпадающий с объектами, которые изучают другие науки;

· должны существовать специфические методы исследования этого объекта, отличные от методов других, уже сложившихся наук.

Исследования, которые объединяются термином «искусственный интеллект», имеют специфический объект изучения и специфические методы. Существуют два подхода к созданию искусственного интеллекта:

1) создание ЭВМ с максимально возможными характеристиками (память, оперативная память, быстродействие), получивших название супер-ЭВМ;



2) моделирование работы головного мозга - нейросетевые технологии (бионический подход).

Суперкомпьютеры

 

Согласно определению Госдепартамента США, компьютеры с производительностью свыше 10 000 млн. теоретических операций в секунду (MTOPS), считаются суперкомпьютерами. Другими основными признаками, характеризующими супер-ЭВМ (кроме высокой производительности), являются самый современный технологический уровень (например, GaAs-технология), специфические архитектурные решения, направленные на понышение быстродействия (например, наличие операций над векторами) и цена (обычно свыше 1-2 млн. долл.).

При создании суперкомпьютеров возникают естественные вопросы:

· какие задачи настолько важны, что требуются компьютеры стоимостью несколько 'миллионов долларов?;

· какие задачи настолько сложны, что Pentium II не достаточно?

Традиционной сферой применения суперкомпьютеров всегда были научные исследования, физика плазмы и статистическая механика, физика конденсированных сред, молекулярная и атомная физика, теория элементарных частиц, газовая динамика и теория турбулентности, астрофизика. В химии это различные области вычислительной химии: квантовая химия (включая расчеты электронной структуры для целей конструирования новых материалов, например, катализаторов и сверхпроводников), молекулярная динамика, химическая кинетика, теория поверхностных явлений и химия твердого тела, создание лекарств. Естественно, что ряд областей применения находится на стыке соответствующих наук (например, химии и биологии) и пересекается с техническими приложениями. Так, задачи метеорологии, изучения атмосферных явлений, и в первую очередь, задача долгосрочного прогноза погоды, для решения которой постоянно не хватает мощностей современных супер-ЭВМ, тесно связаны с решением ряда перечисленных выше проблем физики.

Среди технических проблем, для решения которых используются суперкомпьютеры, можно указать на задачи аэрокосмической и автомобильной промышленности, ядерной энергетики, прогнозирования и разработки месторождений полезных ископаемых, нефтедобывающей и газовой промышленности (в том числе проблемы эффективной эксплуатации месторождений, особенно трехмерные задачи их исследования), и, наконец, конструирование новых микропроцессоров и компьютеров, в первую очередь самих супер-ЭВМ. Суперкомпьютеры традиционно применяются для военных целей. Кроме очевидных задач разработки оружия массового уничтожения и конструирования самолетов и ракет можно упомянуть, например, конструирование бесшумных подводных лодок и др. Самый известный пример — это американская программа СОИ.

Анализируя потенциальные потребности в супер-ЭВМ, их существующие приложения можно условно разбить на два класса. К первому классу можно отнести приложения, в которых известно, какой уровень производительности надо достигнуть в каждом конкретном случае (например, долгосрочный прогноз погоды), ко второму — задачи, для которых характерен быстрый рост вычислительных затрат с увеличением размера исследуемого объекта (например, в экономике супер-ЭВМ используются как быстродействующие банки данных крупнейших корпораций и объединений).

 

Бионический (нейросетевой) подход к созданию интеллектуальных компьютерных систем

 

В настоящее время биоэлектроника является новейшей отраслью науки и техники, изучающей принципы и методы обработки информации живыми организмами с целью создания высокопроизводительных, надежных и интеллектуализированных вычислительных средств. Одним из направлений бионического подхода к созданию интеллектуальных компьютерных систем являются исследования в области создания нейрокомпьютера — систем нечисловой информационно-логической обработки данных, реализуемых на базе новых архитектурных принципов ЭВМ. В основе этих работ лежат интенсивные исследования:

· структуры и процессов функционирования человеческого мозга;

· нейронных сетей низших типов животных;

· методов получения мономолекулярных органических пленок и многослойных структур на их основе;

· методов получения биологических проводников электрического тока;

· по созданию искусственных нейронных сетей в виде специализированных электронных схем, состоящих из электронных аналогов клеток головного мозга.

Отличительной чертой нейронных сетей является их способность менять свое поведение (обучаться) в зависимости от изменения внешней среды, извлекая скрытые закономерности из потока данных. При этом алгоритмы обучения не требуют каких-либо предварительных знаний о существующих в предметной области взаимосвязях — необходимо только подобрать достаточное число примеров, описывающих поведение моделируемой системы в прошлом.

Основанная на нейросетях технология не предъявляет повышенных требований к точности входных данных как на этапе обучения, так и при ее использовании (после настройки и обучения), например, при распознавании симптомов приближения критических ситуаций, для краткосрочных, а иногда и долгосрочных прогнозов. Таким образом, нейросетевая технология обладает двумя чрезвычайно полезными свойствами:

1) способностью обучаться на конкретном множестве примеров;

2) умением стабильно распознавать, прогнозировать новые ситуации с высокой степенью точности, причем в условиях внешних помех (например, появления противоречивых или неполных значений в потоках информации).

Основанные на исследованиях работы мозга, нейросетевые технологии оперируют рядом биологических терминов, понятий, параметров, а метод получил название генетического алгоритма. Генетический алгоритм реализован в популярных версиях нейропакетов - широко известном в России Brain Maker Professional v.3.11 и менее известном, но более профессиональном Neurofo-rester v.5.1. В этих пакетах генетический алгоритм управляет процессом общения на некотором множестве примеров, а также стабильно распознает (прогнозирует) новые ситуации с высокой степенью точности даже в условиях внешних помех (например, появления противоречивых или неполных знаний). Причем обучение сводится к работе алгоритма подбора весовых коэффициентов, который реализуется автоматически без непосредственного участия пользователя-аналитика.

В пакете Neurofo-rester v.5.1. для решения прогнозных задач ряд процедур выполняется автоматически. В частности, автоматически выбирается оптимальное число дней, обеспечиваемых прогнозом. Пакет имеет также инструменты для предварительной обработки данных: корреляционный анализ, позволяющий определить значимость входных параметров прогноза; анализ с помощью масштабных преобразований и экспоненты Херста (Resсaled Range Analysis Hurstexponent) для выявления скрытых циклов данных; диаграмма распределения зависимости прогнозируемой величины от входных параметров. Эти методы позволяют уже на этапе подготовки данных выделять наиболее существенные для прогноза параметры. Все результаты обработки представляются в графическом виде, удобном для анализа, принятия решений.

Современные нейросетевые продукты позволяют работать как с числовыми, так и с текстовыми данными, т. е. преобразовывать набор символов (слово, фраза) в уникальный набор чисел. Ward System делает возможной также обратную операцию, т. е. представление результатов работы нейросети в виде не только чисел, но связного текста, что позволяет генерировать результаты в виде различных информационных сообщений.

Работоспособность первоначально обученных сетей проверяется на тестовой выборке данных. По результатам тестов отбираются наиболее перспективные варианты. При этом руководствуются тем, что точность и надежность прогноза, прежде всего, зависят от типа прогнозируемой величины, состояния, в котором находится система (стационарное, вблизи критической точки и т. п.), типа системы (управляемая извне или замкнутая). Если результаты тестирования неудовлетворительные, то просматривается набор входных данных, изменяются некоторые учебные программы или перестраивается сеть.

После завершения полного цикла решения задачи возможны два пути: пользоваться в дальнейшей работе созданной системой, что вполне приемлемо для одного специалиста, решающего определенный круг задач, или создать для каждой задачи независимые приложения в виде отдельного файла, который может использоваться другими программами. В этом случае полученный вариант нейросетевой технологии представляет собой упакованную нейросеть с описанными функциями передачи данных команд управления.

Использование нейронных сетей открывает практически неограниченные возможности применения, особенно в качестве аналитических инструментов в таких плохо формализуемых и многокритериальных областях управления, как анализ финансовой и банковской деятельности, биржевые рынки. Любая задача, связанная с использованием финансовых средств на валютном рынке или рынке ценных бумаг, сопряжена с риском и требует тщательного анализа и прогноза. Точность прогноза, устойчиво достигаемая нейросетевыми технологиями при решении реальных задач, уже превысила 95%. Поэтому количество примеров успешного применения нейросетевых программных продуктов стремительно растет. Среди перспективных направлений использования нейросетевых технологий в управлении можно назвать создание компьютерных моделей поведения клиента для оценки риска или перспективности работы с конкретными клиентами. Эти модели основаны на анализе проведенных сделок и оценке вероятности того, согласится ли конкретный клиент на то или иное предложение.

На мировом рынке аналитического программного обеспечения представлен широкий спектр нейросетевых технологий - от систем, ориентированных на суперкомпьютеры, стоимость которых превышает 50 тыс. долл., до недорогих (несколько сотен долларов) нейропакетон, работающих на платформе персональных компьютеров и рабочих станций. Это делает доступной технологию нейронных сетей для приложений практически любого уровня. Ее массовое применение - вопрос ближайшего будущего.





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.