МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Память с ассоциативным доступом





Памятьс ассоциативным доступом или ассоциативная память отличается от остальных типов памяти тем, что обращение к ее ячейкам осуществляется не по определенному адресу, а по содержимому ячеек памяти. Фактически ассоциативная память работает как поисковая система, способная найти информацию по заданному образцу. Основу ассоциативной памяти составляют ассоциативные запоминающие устройства(АЗУ) , которые, как и большинство оперативных ЗУ, являются энергозависимыми и реализуются в виде полупроводниковых микросхем (наборов микросхем).

Принцип работы АЗУ поясняет схема, представленная на рис. 3.8.Запоминающий массив, как и в адресных ЗУ, разделен на m-разрядные ячейки, число которых n. Как правило, в состав АЗУ входят:

· запоминающий массив (ЗМ);

· регистр ассоциативных признаков (РгАП);

· регистр маски (РгМ);

· регистр индикаторов адреса со схемами сравнения на входе.

В АЗУ могут быть и другие элементы, наличие и функции которых определяются способом использования АЗУ.

 

Рис. 3.8. Ассоциативное запоминающее устройство

Выборка информации из АЗУ происходит следующим образом. В регистр ассоциативных признаков из устройства управления передается образец для поиска - код признака искомой информации (иногда его называют компарандом). Код может иметь произвольное число разрядов – от 1 до m. Если код признаков используется полностью, то он без изменения поступает на схему сравнения, если же необходимо использовать только часть кода, тогда ненужные разряды маскируются с помощью регистра маски. Перед началом поиска информации в АЗУ все разряды регистра индикаторов адреса устанавливаются в состояние 1.После этого производится опрос первого разряда всех ячеек запоминающего массива, и содержимое сравнивается с первым разрядом регистра ассоциативных признаков. Если содержимое первого разряда i-й ячейки не совпадает с содержимым первого разряда РгАП, то соответствующий этой ячейке разряд регистра индикаторов адреса Тiсбрасывается в состояние 0, если совпадает – разряд Тiостается 1. Затем эта операция повторяется со вторым, третьим и последующими разрядами до тех пор, пока не будет произведено сравнение со всеми разрядами РгАП. После поразрядного опроса и сравнения в состоянии 1останутся те разряды регистра индикаторов адреса, которые соответствуют ячейкам, содержащим информацию, совпадающую с записанной в регистре ассоциативных признаков. Эта информация может быть считана в той последовательности, которая определяется устройством управления.

Заметим, что время поиска информации в ЗМ по ассоциативному признаку зависит только от числа разрядов признака и от скорости опроса разрядов, но совершенно не зависит от числа ячеек ЗМ. Этим и определяется главное преимущество АЗУ перед адресными ЗУ: в адресных ЗУ при операции поиска необходим перебор всех ячеек запоминающего массива. Кроме того, существуют реализации АЗУ, выполняющих поиск одновременно над всеми разрядами всех слов, записанных в память, т.е. время поиска в подобных устройствах не превышает времени цикла памяти.

Запись новой информации в ЗМ производится без указания номера ячейки. Обычно один из разрядов каждой ячейки используется для указания ее занятости, т.е. если ячейка свободна для записи, то в этом разряде записан 0, а если занята, – 1. Тогда при записи в АЗУ новой информации устанавливается признак 0 в соответствующем разряде регистра ассоциативных признаков, и определяются все ячейки ЗМ, которые свободны для записи. В одну из них устройство управления помещает новую информацию.



Нередко АЗУ строятся таким образом, что кроме ассоциативной допускается и прямая адресация данных, что представляет определенные удобства при работе.

Необходимо отметить, что запоминающие элементы АЗУ, в отличие от элементов адресуемых ЗУ, должны не только хранить информацию, но и выполнять определенные логические функции, поэтому позволяют осуществить поиск не только по равенству содержимого ячейки заданному признаку, но и по другим условиям: содержимое ячейки больше (меньше) компаранда, а также больше или равно (меньше или равно).

Отмеченные выше свойства АЗУ характеризуют преимущества АЗУ для обработки информации. Формирование нескольких потоков идентичной информации с помощью АЗУ осуществляется быстро и просто, а с большим числом операционных элементов можно создавать высокопроизводительные системы. Надо учитывать еще и то, что на основе ассоциативной памяти легко реализуется изменение места и порядка расположения информации. Благодаря этому АЗУ является эффективным средством формирования наборов данных.

Исследования показывают, что целый ряд задач, таких, как обработка радиолокационной информации, распознавание образов, обработка различных снимков и других задач с матричной структурой данных, эффективно решается ассоциативными системами. К тому же программирование таких задач для ассоциативных систем гораздо проще, чем для традиционных.

К сожалению, устройства памяти с ассоциативным доступом имеют высокие сложность изготовления и стоимость, превышающие аналогичные показатели как динамических, так и статических ОЗУ. Ассоциативная память является основой для построения параллельных ассоциативных систем, а также для ВС, управляемых потоком данных. Наиболее же широко ассоциативный доступ применяется в подсистемах кэш-памяти.

 

Кэш-память

Впервые двухуровневое построение памяти было предложено М.Уилксом в 1965 году при построении ЭВМ Atlas. Суть подхода заключалась в размещении между ЦП и ОП быстродействующей буферной памяти небольшого размера. В процессе работы ЭВМ те участки ОП, к которым ведется обращение, копируются в буферную память. За счет соблюдения принципа локальности по обращению получается существенный выигрыш в производительности.

Новый вид памяти получил название кэш-память (от англ. cache – «тайник, убежище»), поскольку такая память скрыта, «невидима» для ЦП, который не может непосредственно обратиться к ней. В свою очередь, программист может вообще не знать о существовании кэш-памяти. В серийных ЭВМ кэш-память впервые была применена в системах модели 85 семейства IBMS/360. Сегодня кэш-память наличествует в любом классе ЭВМ, причем зачастую имеет многоуровневую структуру.

Все термины, которые были определены раньше, могут быть использованы и для кэш-памяти, хотя слово «строка» (line) часто употребляется вместо слова «блок» (block).

Как правило, кэш-память строится на основе сверхбыстродействующих и дорогостоящих ОЗУ статического типа, при этом ее быстродействие в 5-10 раз превышает быстродействие ОП, а объем – в 500-1000 раз меньше. Заметим, что увеличению объема кэш-памяти по отношению к емкости ОП препятствует не только и не столько высокая стоимость статических ОЗУ. Дело в том, что при увеличении емкости кэш-памяти возрастает сложность схем управления, что, в свою очередь, ведет к падению быстродействия. Многочисленные исследования показали, что указанное соотношение объемов кэш-памяти и ОП является оптимальным и будет сохраняться в процессе развития ЭВМ при увеличении быстродействия обоих видов памяти.

Как уже было сказано, ЦП не имеет непосредственного доступа к кэш-памяти. За организацию взаимодействия ЦП, ОП и кэш-памяти отвечает специальный контроллер. Вся ОП разбивается на блоки фиксированного объема, при этом старшая часть адреса ОП определяет адрес блока, а младшая часть – адрес слова внутри блока. Обмен информации между ОП и кэш-памятью осуществляется блоками. Кэш-память также имеет свою внутреннюю адресацию, и каждый считанный из ОП блок размещается в кэш-памяти по определенному адресу блока в кэш-памяти. Часто блоки кэш-памяти называются строками или кэш-строками.

Если блок, к которому осуществляется запрос со стороны ЦП, уже находится в кэш-памяти, то его считывание завершается уже при обращении к кэш-памяти. Таким образом, обеспечивая доступ к некоторому адресу, контроллер должен сначала определить, имеется ли в кэш-памяти копия блока, содержащего этот адрес, и, если имеется, то определить, с какого адреса кэш-памяти начинается этот блок. Эту информацию контроллер получает с помощью механизма преобразования адресов. Сложность этого механизма зависит от стратегии размещения, определяющей, в какое место кэш-памяти следует поместить каждый блок ОП.

Не менее важным является вопрос о том, в какой момент нужно помещать в кэш-память копию блока из ОП. Данный вопрос решается с помощью стратегии выборки.

При записи в кэш-память существует несколько методов замещения старой информации, которые определяются стратегией обновления основной памяти.

Часто возникает ситуация, когда несмотря на выборку из ОП необходимого блока, в кэш-памяти нет места для его размещения. В этом случае необходимо выбрать одну из кэш-строк и заменить ее новым блоком. Способ определения удаляемой кэш-строки называется стратегией замещения.

 

Стратегии размещения

Существуетследующие способы размещения данных в кэш-памяти:

· прямое распределение;

· полностью ассоциативное распределение;

· частично (множественно) ассоциативное распределение.

Допустим, разрядность шины адреса n, тогда емкость ОП VОП = 2nслов. Без ограничения общности определим размер кэш-строки в 256 слов, таким образом, вся ОП будет поделена на 2n-8 блоков. В адресе ОП старшие n-8битов будут определять адрес блока, а младший байт – адрес слова в блоке. Пусть емкость кэш-памяти Vкэш в 1024 раза меньше емкости ОП, т.е. Vкэш = 2n-10слов или 2n-18блоков (кэш-строк).

 

Прямое распределение

Если каждый блок основной памяти имеет только одно фиксированное место, на котором он может появиться в кэш-памяти, то такая кэш-память называется кэшем с прямым распределением(direct mapped cache). Это наиболее простая организация кэш-памяти, при которой для отображения адресов блоков ОП на адреса кэш-памяти просто используются младшие разряды адреса блока. Таким образом, все блоки ОП, имеющие одинаковые младшие разряды в своем адресе, попадают в одну кэш-строку, т.е.

 

(адрес кэш-строки) = (адрес блока ОП) mod (число блоков в кэш-памяти)

В нашем примере адрес кэш-строки c будут составлять младшие n-18 бит адреса блока ОП (см. рис. 3.9). Преобразование адреса блока ОП в адрес кэш-строки осуществляется путем выборки этих младших n-18 бит. По этому адресу кэш-строки может быть помещен любой из 1024 блоков ОП, имеющих одинаковые n-18 младших бит. Между собой эти блоки будут различаться старшими 10-ю битами t, называемыми тегом. Для того, чтобы определить, какой именно блок ОП хранится в данное время в кэш-памяти, используется еще одна память – так называемая память тегов(теговая память). Теговая память адресуется пословно, причем каждое слово имеет размер, равный размеру тега. Емкость памяти тегов – это произведение размера тега на общее число кэш-строк, для нашего примера составляет 10·2n-18бит. Адресом памяти тегов является адрес кэш-строки с. В отличие от памяти тегов, память, в которой хранятся блоки, помещенные в кэш, называется памятью данных. Память данных адресуется пословно, ее адрес образуется из адреса кэш-строки и адреса слова внутри блока (кэш-строки).

Рис. 3.9. Структура адреса памяти при прямом распределении

 

Рис. 3.10. Организация кэш-памяти с прямым распределением

При доступе к A-му адресу ОП (рис. 3.10) младшие n-18 бит адреса блока (поле c), где содержится этот адрес, используются в качестве адреса кэш-строки. По адресу кэш-строки из теговой памяти считывается тег (поле t). Параллельно этому осуществляется доступ к памяти данных с помощью n-10 младших бит адреса A(поля c и w). Если считанный тег и старшие 10 бит адреса Aсовпадают, то это означает, что блок, содержащий адрес A, существует в памяти данных, и в слове, к которому осуществляется доступ, хранится копия A-го адреса ОП.

Если тег отличается от старших 10 бит адреса A, то из основной памяти считывается блок, содержащий адрес A, а из кэш-памяти удаляется кэш-строка, чей адрес определяется полем c(младшими n-18 битами) адреса считываемого блока. На место удаленной кэш-строки помещается считанный из ОП блок, при этом обновляется соответствующий тег в памяти тегов.

Достоинством прямого распределения является простота реализации, однако из-за того, что адрес кэш-строки однозначно определяется адресом блока ОП, высока вероятность сосредоточения областей блоков в некоторой части кэш-памяти. Замена блоков в этой части будет происходить довольно часто, в то же время другие области кэш-памяти могут простаивать. В такой ситуации эффективность кэш-памяти заметно снижается.

 





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.