МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Зависимые и независимые события





Начнём с независимых событий. События являются независимыми, если вероятность наступления любого из них не зависит от появления/непоявления остальных событий рассматриваемого множества (во всех возможных комбинациях).

Теорема умножения вероятностей независимых событий: вероятность совместного появления независимых событий А и В равна произведению вероятностей этих событий: Р(АВ) = Р(А) × Р(В)

Вернёмся к простейшему примеру 1-го урока, в котором подбрасываются две монеты и следующим событиям:

– в результате броска на 1-й монете выпадет орёл;
– в результате броска на 2-й монете выпадет орёл.

Найдём вероятность события А1А2 (на 1-й монете появится орёл и на 2-й монете появится орёл – вспоминаем, как читается произведение событий!). Вероятность выпадения орла на одной монете никак не зависит от результата броска другой монеты, следовательно, события А1 и А2 независимы. По теореме умножения вероятностей независимых событий:

Р(А1А2) = Р(А1) × Р(А2) = × =
Аналогично:

= × = × = – вероятность того, что на 1-й монете выпадет решка и на 2-й решка;

= × = × = – вероятность того, что на 1-й монете появится орёл и на 2-ой решка;

= × = × = – вероятность того, что на 1-й монете появится решка и на 2-ой орёл.

Заметьте, что события , , , образуют полную группу и сумма их вероятностей равна единице: + + + = = 1

Теорема умножения очевидным образом распространяется и на большее количество независимых событий, так, например, если события А, В, С независимы, то вероятность их совместного наступления равна: Р(АВС ) = Р(А) × Р(В)×Р(С).

Задача 3

В каждом из трех ящиков имеется по 10 деталей. В первом ящике 8 стандартных деталей, во втором – 7, в третьем – 9. Из каждого ящика наудачу извлекают по одной детали. Найти вероятность того, что все детали окажутся стандартными.

Решение: вероятность извлечения стандартной или нестандартной детали из любого ящика не зависит от того, какие детали будут извлечены из других ящиков, поэтому в задаче речь идёт о независимых событиях. Рассмотрим следующие независимые события:

S1 – из 1-го ящика извлечена стандартная деталь;

S2 – из 2-го ящика извлечена стандартная деталь;

S3 – из 3-го ящика извлечена стандартная деталь.

По классическому определению: Р(S1) = = 0,8; Р(S2) = = 0,7; Р(S3) = = 0,9; – соответствующие вероятности.

Интересующее нас событие (из 1-го ящика будет извлечена стандартная деталь и из 2-го стандартная и из 3-го стандартная) выражается произведением S1S2 S3 .

По теореме умножения вероятностей независимых событий:

Р(S1S2 S3) = Р(S1) × Р(S2) × Р(S3) = 0,8 × 0,7 × 0,9 = 0,504 – вероятность того, что из 3-х ящиков будет извлечено по одной стандартной детали.

Ответ: вероятность того, что все детали окажутся стандартными, равна 0,504

Задача 4(для самостоятельного решения)

В трех урнах имеется по 6 белых и по 4 черных шара. Из каждой урны извлекают наудачу по одному шару. Найти вероятность того, что: а) все три шара будут белыми; б) все три шара будут одного цвета.

Опираясь на полученную информацию, догадайтесь, как разобраться с пунктом «бэ». Примерный образец решения оформлен в академичном стиле с подробной росписью всех событий дан в конце урока.

Зависимые события. Событие Х называют зависимым, если его вероятность Р(Х) зависит от одного или большего количества событий, которые уже произошли. За примерами далеко ходить не надо – достаточно дойти до ближайшего магазина:

Х – завтра в 19.00 в продаже будет свежий хлеб.

Вероятность этого события зависит от множества других событий: завезут ли завтра свежий хлеб, раскупят ли его до 7 вечера или нет и т.д. В зависимости от различных обстоятельств данное событие может быть как достоверным Р(Х) = 1, так и невозможным Р(Х) = 0. Таким образом, событие Х является зависимым.

Другой пример, В – на экзамене студенту достанется простой билет.

Если идти не самым первым, то событие В будет зависимым, поскольку его вероятность Р(В) будет зависеть от того, какие билеты уже вытянули однокурсники.





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.